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AERATION DEMAND

Integrating machine learning and bio-electrochemical

sensors can increase energy savings and
improve aeration control

Kash Delsoz Bahri, Rob Smith, Jack Ambler, Colin Ragush, Patrick Kiely

ater and wastewater treatment is

typically among a community’s

largest energy consumers,

accounting for 30% to 60% of
energy use. It is no wonder that municipal utilities
across the globe are secking strategies for energy-
cfficient wastewater treatment.

Because acration can account for the majority
of the energy used for wastewater treatment —
50% to 75%, according to the 2021 manual Energy
in Water Resource Recovery Facilities published

by the Water Environment Federation (Alexandria,
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Virginia) — reducing energy demand for aeration is
key to reducing costs and improving sustainability
at water resource recovery facilitics (WRRFs).
Aecration demand is dependent on a number
of variables and can vary widely, requiring
WRRFs to monitor continuously and make
frequent adjustments. A convergence of two
new technologies — bio-electrochemical sensors
(BES) and machine learning (ML) — offers an
opportunity to overcome the limitations of existing
monitoring while improving the efficiency of

wastewater acration.
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Aeration Considerations

Aeration demand is dependent on wastewater
characteristics that vary daily, weekly, and
scasonally. On top of that, transient discharges
from industry and storm events add additional
variability. As a result, acration demand can vary by
a factor of four or more, and frequent adjustments
are required to optimize acration. Continuous
online monitoring of aeration demand is essential to
achieve the goal of minimum energy use.

Estimation of acration demand can be made
by measuring oxygen demand. Biochemical
oxygen demand (BOD) is a direct measurement
of wastewater biodegradability, but it requires
5 days, which makes it unsuitable for process
control. Measuring chemical oxygen demand
(COD) is much faster. However, COD measures all
oxidizable organics and thus is an indirect method
of measuring oxygen demand that is biologically
degradable. BOD and COD are accurate,

standardized measurements of oxygen demand, but

the limitations of the analytical methods mean that
neither parameter is practical for aeration control.

Conventional aeration control typically is
based on measurement of oxygen supply. Bacteria
require oxXygen to consume organics. Consequently,
maintaining ample dissolved oxygen (DO) in a
reactor ensures the reaction proceeds at a high rate.
DO measurement is fast, simple, and accurate.
However, it is a lagging indicator. Aeration control
with DO is feedback control. The objective
of feedback control with DO is to hold 2 DO
concentration at some downstream location in the
reactor that lags the introduction of the wastewater
into the reactor. The location of the DO sensor(s) is
critical to the stability of the control system.

Feed-forward control is superior to feedback
control for responding to variable loading
conditions and, as a result, has the potential to
produce higher-quality effluent more consistently
and at lower cost. Feed-forward control requires
two components, measurement of the wastewater
before it enters the reactor and a model to
predict oxygen demand. Ammonia typically is the
wastewater measurement as online ammonium
measurement is reasonably reliable.

The complexity and accuracy of the mechanistic
models typically used varies. As a result, another
requirement of feed-forward control usually is a
feedback component to correct for errors in the
model. Direct measurement of biological oxygen
demand with a BES and a more accurate model
created with ML have the potential to improve
feed-forward control and increase the efficiency of
wastewater acration.

A Living Sensor

A BES provides the capability to estimate
wastewater BOD from front end of the wastewater
treatment facility. This real-time reading at or near
the influent location is a unique factor that makes
it useful as part of organic loading prediction for
improved aeration control accuracy.

The sensor consists of naturally occurring
bacteria that form a biofilm attached to its
conductive surface (see Figure 1, p. 42). As the
biofilm consumes the wastewater, an electrical
current (signal) is generated that provides a direct
measure of oxygen demand by the in situ biology
in real time. A higher signal means more readily
consumable oxygen demand. As conditions in the
wastewater change due to a slug load or stormwater,
the signal increases or decreases according to
those conditions. Essentially, the sensor provides
a surrogate reading for the readily biodegradable
COD or the food in the wastewater that is being
consumed by this clectrically connected biofilm.
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Biofilm will form
on the anode

side of the sensor
and consume
carbonaceous
organics and
respire electron as
a result. The flow
of the electron,
measured by a
conirol panel,
indicates the
biological activity
and carbon
consumption of the
system.
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Figure 1. BES Architfecture
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A BES is simple to operate and maintain.
Biofilms that cause fouling on traditional sensors
are an essential component of the BES. Also, the
sensor responds quickly and does not require
manual, onsite calibration. Sensors installed
at feed-forward locations of the wastewater
treatment process — such as primary clarifiers and
headworks — can be used to predict the aeration
requirements dynamically.

The sensor output is a direct measure of
consumable BOD (mg/L) being consumed in real
time by the biomass in situ in the wastewater
stream. If the sensor readings indicate challenging
or problematic influent BOD conditions, it
communicates data to operators as an alarm
notification. The sensor signal can provide insights
on the quantity of carbonaceous organic material
entering the aeration tank and its effects on aeration
demand.

Machine Learning

ML is a complementary technology that,
coupled with a BES, can increase control accuracy
further, resulting in more reliable treatment and
greater energy efficiency.

ML, a subset of artificial intelligence, is
dedicated to developing algorithms and models
that emulate the human capacity for learning.
These models are designed to learn from past data

to detect patterns and correlations among various
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input parameters. Such learning enables them to
forecast future behavior when they are presented
with new and unseen data.

In a broader sense, an ML algorithm is a black
box model of a system that links input data to
output prediction without disclosing its internal
workings. In the context of wastewater treatment,
numerous variables — both quantifiable and
beyond measurement — influence the demand for
oxygen. ML offers a way to harness the available
data by constructing a model that bridges the gap
between observed variables and the predictive
goal, thereby enhancing our understanding and
management of these complex systems.

Typically, ML models undergo evaluation
prior to their full deployment. This critical step
using historical data sets scts aims to find which
models most closely align with both the data
and the specific problem statement. Statistically
cvaluating the outcomes of different models helps
to identify the most effective model. Metrics used
include R2, a measure of model accuracy; and
Root Mean Squared Error (RMSE), a measure of
model precision.

This evaluation process involves dividing the
data set into two segments: the training data set,
on which the model is trained; and the validation/
testing data set, which is used to evaluate the
model’s performance on data it has not seen

previously. This approach ensures rigorous testing



of the model’s accuracy and precision. Once a
model is adequately trained, it then can be applied
to new data, which facilitates real-time prediction
and decision-making.

Integrating BES Signal and
Aeration Control Logic
Using a BES enables the optimization of
aeration rates, allowing WRRFs to monitor
the fluctuating patterns of organic load closely
throughout the day and week and enabling
immediate actionable data predictions. This
approach aims to refine the efficiency of the
acration process and helps WRRFs adapt swiftly to
the dynamic nature of wastewater treatment.
These sensors have demonstrated effectiveness
in monitoring the biological nutrient removal
process. As described in their 2023 Environmental
Science & Technology paper, “Integrating Bio-
Electrochemical Sensors and Machine Learning to
Predict the Efficacy of Biological Nutrient Removal
Processes at Water Resource Recovery Facilities,”
Emaminejad and colleagues developed models that
predicted the amount of nitrate eliminated from
the system, identifying the BES signal as a primary
predictive factor. Encouraged by these outcomes,
the authors applied similar models to aeration data
scts to evaluate the capability of the BES to predict
DO levels. Minimum data required to initiate
developing an ML model are as follows.
B Data interval should be at least hourly (every 10
to 15 minutes preferred).
B A minimum of 3 months of data is required
to start the modeling process. (Working with
less data is possible, but it will affect the
development of the model and its accuracy.)
B DO data is an essential input, as it will be the
target of prediction.
B Acration rate also is mandatory, as it serves as
the primary controlling variable for the control

approach.
Figure 2. BES Configuration at WRRF

B Other process parameters such as influent flow
rate, mixed liquor suspended solids (MLSS),
and ammonia concentration can enhance the
model’s performance and provide insights into
the intricacies of the system.

B There should be at least one BES at influent and/

or aeration tanks.

The objective for developing the model is to
create a tool capable of predicting oxygen demand
and dissolved oxygen levels, minutes to hours
ahead of time. By achieving this, the models cither
can guide operators to adjust the acration process
manually, or automatically supply a feed-forward
element for the DO controller through model
predictive control (MPC). This predictive capability
aims to enhance the operational efficiency of
aeration systems, ensuring optimal oxygen levels are
maintained for the wastewater treatment process.

MPC employs a process model to forecast
the outcome of the process based on inputs and
disturbances. It uses an optimizer to adjust the
controlled variables within the model, ensuring they
satisfy various constraints applied to both inputs
and outputs. Leveraging a model for prediction
enables the controller to operate in a feed-forward
manner, as it allows for more precise adjustments in
response to real-time changes in the process.

An advanced aeration control (AAC) strategy
that incorporates MPCs uses three cascade control
loops. The initial loop determines the ideal DO
setpoints for each control zone, using the BES signal
as a proxy for the combined BOD and nitrogenous
oxygen demand. The second control loop focuses
on computing the airflow required to maintain the
DO levels at the target setpoints. In the third and
final control loop, AAC specifies the valve position
for every control zone, ensuring precise allocation of
airflow to maintain the targeted acration efficiency
across the system. The second and third loops are

the same as for conventional aeration control.
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WRRF = water resource recovery facility.
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Figure 3. Top Predictors at WRRF
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The team tested ML models that incorporate BES
at a WRRE using data collected May to September
2020 from a standard acration unit. They installed
two sensors — one after the primary clarifier and
another at the effluent of the aeration tank (see
Figure 2, p. 43). Other variables selected to develop
the models included the acration rate, flow rate,
MLSS, ammonia concentration, and cyclical time
variables reflecting diurnal and weekly patterns.

Before initializing the model development, the
authors performed a series of analyses to determine
the most desirable features — input variables — for
the model. Mutual information (MI) — a measure of
dependence between two variables — helped identified
the top predictors. Based on MI results, BES signal has
proven to be a strong predictor of DO. The effects of
the remaining features are evaluated based on these
results, and only the best features are included in the

of ML performed on an aeration treatment case
study. The BES signal, installed at the influent of the
system, had the highest rank. This means that BES
signal is the most strongly associated with the target
variable being predicted. Similarly, other acration
case studies also showed the importance of the BES
data in models.

Following data acquisition and cleaning, the
team split the data set into training and test subsets
to develop and test different models. This division
was executed with a ratio of 70% for the training
data set and 30% for the test data set. This
methodology ensures that the model can generalize
its learning to new, unseen situations, thereby
providing a reliable measure of its predictive
accuracy and robustness.

The team trained and tested different models

including linear regression, Random Forest, and

Figure 4. Model Effectiveness With and Without BES Data
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Figure 5. Feature Importance Analysis
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XGBoost to identify the most effective model.
Comparing model accuracies based on R* and
RMSE metrics of the test data set helped identify
the best model. The R2? metric provides a measure
of how well the model replicates observed
outcomes, based on the proportion of total
variation of outcomes explained by the model.
On the other hand, RMSE offers a measure of
the average magnitude of the errors between the
values predicted by the model and the observed
values, giving insight into the average prediction
error. Higher R* and lower RMSE indicate a more
accurate model.

The best model output — including the BES
signals — resulted in an R? of 0.96 and RMSE of
0.35. This suggests that these models are effective in
capturing the variance of the data set and making
reliable predictions. However, when the sensors were
excluded from the inputs, there was a decline in
model performance; the R? decreased to 0.88, and
the RMSE increased to 0.64 (see Figure 4, p. 44).
This highlights the significant value of incorporating
BES data into the model inputs to enhance the
model’s predictive accuracy and precision.

To assess the significance of each input parameter
further, the team conducted a feature importance
analysis. This analysis quantitatively evaluates
the contribution of each input toward reducing
prediction uncertainty, with higher scores indicating
a greater impact on the model’s predictions relative
to other features. Based on the results, the BES signal
from the primary clarifier was the top predictor,
indicating the importance of the sensor in prediction
(see Figure 5, above). This also suggests that a model
with BES data as the feature likely can achieve

higher accuracy with fewer required parameters as
inputs for accurate prediction. More experiments
with additional data sets are required to further

evaluate this scenario.

Takeaways

The BES has great potential for wastewater
treatment monitoring. It is a living sensor that
provides an actual measurement of oxygen
demand in real time. The sensors are simple to
maintain, do not require calibration, and respond
quickly to changing conditions. Furthermore, to
function, the sensors rely on colonization by native
bacteria — conditions that on conventional sensors
would be considered fouling and interfere with
proper function.

A machine learning model demonstrates the
potential for BES in aeration control by predicting
the DO concentration in an activated sludge
aeration tank. The model inputs included routine
measurements and signals from the sensors. The
team found that sensor signals had the greatest
effect on the DO prediction. Thus, the sensor signal
showed itself to be a biologically relevant input that
is essential for ML model accuracy. ™
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